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Steady-state creep of an alloy based 
on the intermetallic compound Ni3AI(u ') 

J.R. N I C H O L L S * , R E E S  D. R A W L I N G S  
Department of Metallurgy and Materials Science, Imperial College, London, UK 

An investigation of the steady-state creep of a Ni3AI.10 at% Fe alloy (~') has shown 
that two creep mechanisms were operative over the temperature range 530 to 930 ~ C. The 
experimental data at low temperatures (below 680 ~ C) were not consistent with any of 
the established creep theories. However, the experimental data were in good agreement 
with a proposed model for cross-slip from octahedral {1 1 1} planes on to cube {1 0 0} 
planes in LI2 crystals. Above 680 ~ C, the rate-controlling mechanism, which had an 
activation energy of 3.27 eV atom- 1, is considered to be the removal/production of APBs 
during climb. 

1. Introduction 
In the majority of nickel-base superalloys the 
strength at elevated temperatures is attributed in 
the main to the presence of a dispersion of the 
intermetallic compound Ni3A1 (3`'). 3`' can accom- 
modate considerable quantities of alloying elements 
in solution and analysis has shown that 3`'-precipi- 
tates in superalloys contain various elements such 
as titanium, chromium and niobium. In view of 
the role played by 3`' in these alloys, and the quest 
for materials to operate at higher temperatures it is 
appropriate to investigate the creep behaviour of 
3`' and its alloys. 

Sherby and Burke [1], or reviewing the creep 
behaviour of metals and alloys, concluded that the 
steady-state creep rate d of most fine-grained poly- 
crystalline metals, non-metals and solid solutions, 
at temperatures above half their melting point Tin, 
is controlled by the rate of atom mobility. Below 
half the melting point, extensive recovery can no 
longer take place by atomic diffusion and other 
thermally activated processes are rate-controlling. 
Typical examples of rate-controlling creep mech- 
anisms for both diffusion and non-diffusion con- 
trolled processes are tabulated in Table I. 

Although the creep properties of nickel-base 
superalloys are well documented there is little in- 
formation available on the creep of 7'  and its 
alloys. Thornton et  al. [2] have studied transient 
*Presently at Department of Materials, Cranfield Institute 
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creep in 3`' contianing 2%Cr and observed two 
creep mechanisms over the temperature range 25 
to 626 ~ C. At the lower temperatures, and at low 
stresses at intermediate temperatures, the transient 
creep response indicated an exhaustion of the 
mobile dislocation density. In contrast at the 
higher temperature, and at high stresses at inter- 
mediate temperatures, recovery effects were rate- 
controlling. 

To the author's knowledge, the only published 
work on steady-state creep in alloys based on 
Ni3Al is that by Flinn [3] on 3'' containing 10% 
iron. This work showed that creep over the tem- 
perature range 816 to 1093~ C (0.65 to 0.82 Tin) 
was diffusion controlled. Flinn proposed that the 
rate-controlling process was the diffusion of atoms 
to and from the antiphase domain boundaries 
(APBs). Under these conditions the creep rate will 
depend on the rate of formation of wrong bonds 
in front of a leading superpartial dislocation and 
hence depends on the net jump rate of atoms in 
the direction of the applied stress. Flinn concluded 
that Weertman's [11] analysis for microcreep 
should be applicable and successfully fitted his 
experimental data to the appropriate equation (see 
Table I). 

This paper reports the results of an investigation 
of the steady-state creep chracteristics of an alloy 
of similar composition to that studied by Flinn. 

of Technology, Cranfield, Bedford. 
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TAB L E I Proposed rate-controlling creep mechanisms 
�9 . g e  

Mechanism Theoretlcai equations References 

Non diffusion controlled mechanisms 

Movement of dislocations over 
Peierls barriers 

Intersection of dislocations 

Cross-slip 

Diffusion controlled mechanisms 

Movement of jogged screw dislocations 

Climb of edge dislocations 

Drag of solute atoms 
(Viscous type dislocations motion) 

Diffusion creep 

[--AH 0 (1 + ~p)] 
e = C e x p [  ~ - .exp[B(o--at2)  ] 

where0p = ~-log[16ap] �9 1_ ira j '  AH~ = Kink energy; 

ap = Peierls stress. 

where AH 0 = intersection energy; 
V* = activation volume 

~ = C e x p - - [  -AH~ --cln(a/ae)]kT 

where AH 0 = energy for cross slip; 
a e = critical resolved shear stress 

= C exp sinh [~-~- j  

where AHsD = activation energy for self-diffusion: 
1 = spacing of jogs; b = Burgers vector 

[-"'d 
= Ca n exp L kT J s i n h / ~ /  

M 

where m ~ n ~ 2; AHsD = activation energy of 
self-diffusion. 

4 = conexp [ -AHsD] 
k k T  J 

where n = 1 or 3; AHsD = activation energy of 
self-diffusion. 

lOad3D 
d - (Nabarro-Herring Equation) 

L~kT 

BcrdD (Cable Equation-Grain boundary 
L 2 kT diffusion creep) 

where D = diffusion coefficient; L = grain diameter; 
d = atom diameter. 

Conrad [4 ] 

Weertman [51 

Seeger [6 ] 

Schoeck and 
Seeger [ 7 ] 

Mott [8] 

Weertman [9] 
Weertman [101 

Weertman [111 
Cottreli [ 12] 

Nabarro [ 13 ] 
Herring [141 
Williams [151 
Cable [16] 

*Symbols: d = strain-rate; a = applied stress; a!, = internal stress; T = temperature; 
k = Boltzmann's constant; B, C and c are constants; AH = activation energy�9 

However, the range of  testing temperatures  (580 

to 960 ~ C) employed  in the present  investigation 

is ex tended to lower temperatures  than  those used 
by  Fl inn .  

2. Experimental procedure 
The alloy (nomina l ly  N i 3 A l . 1 0 a t % F e )  was sup- 
plied by  the In terna t ional  Nickel Company  in the 
form of  a vacuum-cast  ingot o f  approximate ly  
2 kg. Smaller ingots were prepared by  mel t ing 50 g 
charges of  this alloy in an electric-arc furnace. Fol- 
lowing casting, all ingots were homogenized  at 
1000~  for 2 4 h  and then  quenched  in to  iced 
water. Light and electron microscopy conf i rmed 

that  the alloy was single phase after the homogen-  
izat ion t rea tment  and also after creep testing. 

A typical  analysis for the three major  const i tut -  

cuts, plus the trace elements  copper and silicon 
(possible con taminan t s  from the arc casting and 
subsequent  heat - t rea tment) ,  o f  an homogenized 

arc-cast ingot is presented in Table II. The alloy is 
not-s toichiometr ic  (a luminium-r ich)  assuming that  
i ron subst i tutes  equally for nickel and a lumin ium 
once a critical concent ra t ion  ( ~  1.0 at. %) of  i ron on  

the a lumin ium sublattice has been exceeded [17] .  
Difficulties associated with the fabricat ion of  

tensile creep specimens were alleviated by  testing 
in uniaxial  compression.  Specimens 5 m m x  

2 4 5 7  



TABLE II Analysis of an homogenised arc-cast ingot 

Element (wt %) (at. %) 

Ni 77.00 68.23 
A1 10.94 21.09 
Fe 11.46 10.68 
Cu <100ppm - 
Si <100 ppm - 

-10 

2 m m  x 2ram were cut from the homogenized in- -14 
gots, using a fine silicon carbide slit grinding wheel, 
and then polished on all faces. The creep tests ~ -~s 
were carried out in a constant load machine with "~ 
extensometry capable of  detecting creep rates of  ~ -16 
5 x 10-9sec -1. Specimens were tested over the .u.c 
temperature range 530 to 930~ with stresses -17 
varying from 100 to 6 0 0 M N m  -2. Temperature 
and load cycling tests were used to determine the -18 
temperature and stress dependence of  the steady- 
state creep rate at constant structure. A more 
detailed account of  the experimental procedure is 
given in [18].  

3. Results 
The steady-state creep data for Ni3AI.10 a t .%Fe 
are presented in Figs. 1 -3 .  Fig. 1, which is a con- 
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Figure 2 Plot showing that the stress dependence of the 
steady-state creep rate is not exponential at temperatures 
below 680 ~ C. 
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Figure 1 The temperature dependence of the steady-state 
creep rate in Ni3 AI.10 at. %Fe. 
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ventional Arrhenius plot, summarizes the tempera- 
ture dependence of  the steady-state creep rate at 
constant stress. This plot indicates that there are 
two creep mechanisms operating over the tempera- 
ture range of  the investigation. The lower tempera- 
ture mechanism is characterized by a smaller gradi- 
ent and the transition from one mechanism to 
another is around 650 to 700 ~ C. It is well estab- 
lished that the flow stress of  7 '  and its alloys in- 
creases with increasing temperature, reaching a 
peak value at a temperature, Tp, which depends on 
the degree of  stoichiometry and alloying addition 
[19].  It is of  interest to note that the peak tem- 
perature of  the alloy used in the present investi- 
gation was approximately 700 ~ C [18],  i.e. in the 
same temperature range as the proposed changes in 
creep mechanisms. 

Accepted rate-controlling mechanisms (Table I) 
require that either the creep rate depends expo- 
nentially on stress [4 -6 ]  or that it exhibits a 
power law dependence [ 8 - 1 6 ] .  As can be seen 
from the load cycling data for temperatures below 
680 ~ C, neither an exponential nor a power law 
stress dependence is observed (Figs. 2 and 3). Thus, 
current creep theories do not satisfactorily describe 
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Figure 3 Graph showing that there is not a power law 
dependence of the steady-state creep rate on stress. 

the creep behaviour of  3'' at these low tempera- 
tures. 

4. Discussion 
4.1. Steady-state creep in the temperature 

range 680 to 930 ~ C 
An electron microscopy study of  Ni3 A[5.5 at. % Ti 
has shown that, at tempeatures in excess of  550 ~ C 
(Tp for the alloy), the dislocation structure consists 
of  predominately edge dislocation dipoles which 
show a tendency to collapse to form rows of  loops 
[20].  The collapse of  the edge dipoles occurs by 
dislocation climb and the removal/production of  
APBs by diffusion. 

If  it is assumed that the dislocation structure is 
common to all 3'' alloys at temperature above Tp, 
and that the collapse of  the dipoles is the rate- 
controlling creep mechanism, then an argument 
closely following that of  Flinn's [3] may be ap- 
plied. Flinn proposed that the creep of  NihAI.10 
a t .%Fe at temperature above 800~ is governed 
by the rate of  motion of  sections of  dislocation 
loops which are not in the slip plane. Hence the 
rate-controlling step is the removal/production o f  
APBs by thermal motion of  neighbouring atoms. 
Such dislocation motion is a viscous drag mechan- 
ism and consequently Weertman's analysis of  
microcreep should apply [11] : 
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Figure 4 Plot to determine the activation energy for creep 
in the temperature range 680 to 930 ~ C using Equation l. 

= - - a  ~exp  - - A H  ( l )  
T 

where K -  2rrDob. Do, b, G and k are the dif- 
Gk 

fusion coefficient, the Burgers vector, the shear 
modulus and Boltzmann's constant respectively, n 
is a constant which is equal to three. 

The high temperature (>680  ~ C) creep data 
obtained in the present investigation are plotted, 
according to Equation 1, in Figs. 4 and 5. The 
values determine for K, n and A H  from these 
graphs are given in Table III. 

In applying Weertman's analysis of  microcreep 
to the high temperature creep deformation in 3'', 
Flinn suggested that AH consisted for two com- 
ponents, namely an energy for self-diffusion 

TABLE IlI Constants in Equation 1, determined by 
applying Weertman's microcreep analysis [ 11 ] to high 
temperature creep deformation in Ni 3 A1.10 at. % Fe. 

K n AH 
(N m- 2)- n (eV atom-' ) 

Present work 10 -9.2 -+l"s 2,56 -+ 0.24 3.27 -+ 0.30 
Flinn [3] 10 -13-8-+''4 3,2 _+ 0.2 3.38 -+ 0.09 
Calculated from 10-1"16 3 3.55 
theory 
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Figure 5 Plot to determine the stress exponent n for creep 
in the temperature range 680 to 930 ~ C using Equation 1. 

AHsD , and an energy, r/, necessary to produce 
wrong bonds: 

AH = AHsD + r/ (2) 

Theoretical values for AH and K were calculated 
from Equations 1 and 2 using the following values 
of the constants for Ni3Al: G = 5.7 x 101~ Nm -2 
[21], b = 5.03 x 10-1~ [18], AHsD--3.14eV 
atom- 1 [22], Do =10-4m2sec -1 [22] and r~= 
0.41 eVatom -1 [3]. 

As shown in Table III, good agreement was 
obtained between the theoretical and experimental 
values (all the experimental values lie within 95% 
confidence limits of their respective theoretical 
values). The experimental activation energy for 
creep (3.27 eV atom -1) is slightly lower than the 
calculated value of 3.55eVatom -~. However, 
Hancock [22] found that the addition of 5 at. % 
Ti to Ni3AI" reduced AHsD by approximately 
0.5 eVatom -1. Hence the experimental value of 
AH for Ni3 AI.10 at. % Fe may be lower than the 
theoretical value for Ni3 A1 because the iron solute 
lowers AHsD. 

Finally, the present results closely agree with 
those determined by Flinn over the temperature 
range 800 to 1180~ indicating that the same 
mechanism is operative from 680 to 1180 ~ C. 

4.2. Steady-state creep at temperatures 
below 680 ~ C 

At temperatures below half the melting point (the 
melting point, Tin, for Ni3AI.10 at. % Fe is 1390 ~ C) 
diffusion-controlled processes are very stow, hence 
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other thermally activated mechanisms must be 
responsible for creep. Studies of creep in f c c  
metals at temperatures of less than 0.5 Tm indicate 
that the rate-controlling mechanism may be cross- 
slip [7, 23]. Furthermore, an electron microscopy 
study of Ni3 A 1.5.5 at. % Ti has shown that over the 
temperature range 0.61 to 0.93 Tp (where Tp is 
the peak temperature) cross-slip readily occurs 
from octahedral {1 11} to cube {1 00} and from 
cube to octahedral planes [20]. Consequently it is 
proposed that cross-slip is the rate-controUing 
mechanism for creep in Ni3Al.t0at.%Fe at tem- 
peratures below 680 ~ C, (i.e. over the temperature 
range of 0.84 to 0.98 Tp). 

The available cross-slip mechanisms are not 
applicable to cross-slip in 3" as they cannot take 
into account that, (i) 3" has the L12 structure and 
hence cross-slip involves stacking fault and APB 
energies, and (ii) cross-slip to and from octahedral 
and cube planes must be considered [20, 24]. The 
following cross-slip mechanism has been developed 
for L12 Ni3 A1, but with minor changes could be 
modified for other ordered structures. 

4.2. 1. A cross-slip mechanism for Ni3AI 
The various steps in the cross-slip of a superlattice 
dislocation in the L12 structure from the primary 
octahedral plane to an octahedral or cube plane 
are given in Fig. 6. Firstly, the Shocldey partial 
constricts forming a node in the primary {1 1 1} 
plane. The energy required for construction is Uc 
(Fig. 6a). The node then expands producing a 

a 
segment of undissociated ~ (1 1 0) screw dislocation. 

The energy for expansion is the energy, (JR, needed 
to recombine the partial dislocations (Fig. 6b). 
The next step is the movement of a segment of the 
dislocation on to the cross-slip plane. The line 
energy of the dislocation is increased by AUL and 
a new region of antiphase domain boundary is pro- 
duced (AUApB). These energy requirements are 
reduced by the work done, Wcs, and by the re- 
solved stress on the cross-slip plane (Fig. 6c). Fi- 
nally, if the cross-slip plane is an octahedral plane, 
the dislocation segment dissociates again into 
Shocldey partials (Fig. 6c). The activation energy 
for cross-slip, Ucs, is therefore given by the fol- 
lowing expressions: 

(i) cross-slip from a {1 1 1 } to {1 0 O} plane 

Ucs = [Uc + g s l l , ,  + [AUL -- Wcs]loo 

+ [ A U A p B ]  1 0 0  ( 3 )  



(o.) The formation of a constriction. 

{111] 

UC 

(b) The recombination of Shockley PartJcfis to form an expanded node. 

~ [111J UC �9 UR 

(c) The formation of ct cross-slipped segment. 
(1) On a cube plane. 

[1111 

[U C " UR']111* [AUL-Wcs] 100 
�9 [ AUApB]IO O 

(II.) On an octahedral plane. 

Uc* UR ] 11~ § 

[Uc- UR *~UL-Wcs] 111 
+ [ AUAPB+ AUsF] 111 

Figure 6 Formation of a cross-slipped dislocation 
segment. 

(ii) cross-slip from a {1 0 0} to {111 } plane 

UCS ----- [Uc --  UR ~- AUL  --  ~ ] C S ] l l l  

+ [ A U A p  B + A U s F ] l l l  ( 4 )  

(iii) cross-slip from a {111 } to {111 } plane 

Ucs = [Uc + UR]111 

+ [ U  c - -  UR -~- A U L  - -  [4]CS] 111 

-~- [ A U A p  B -t- A U s F ] 1 1 1  (5 )  

In 7', dislocations may cross-slip on to a parallel 
{1 11} plane via a {100}plane or a {1 1 1 } cross-slip 
plane. Since two alternative routes are available the 
one with lowest activation energy is fikely to occur. 
Cross-slip via the {1 0 0} plane is accomplished in 
two steps, namely cross-slip from {1 11} to {1 0 0} 
and then cross-slip from {1 0 0 } to {1 11 }. As these 
two steps constitute a series process, the step with 
highest activation energy must be rate-controlling. 
A comparison of Equations 3 and 4, indicates that 
cross-slip from {1 1 1 } on to a {1 0 0} plane is rate- 
controlling for cross-slip via a cube plane; 
[AUAPB + A U s F ]  111 > [AUAPB]  100, [ U c  @ 

U R ] l l  1 > [ g  C - -  U R ] l l  1 and [zxg L - -  14]cs] 100 ~-- 

[ A U L  - -  [4]CS] 111" 
By far the most significant contribution to the 

energy for cross-slip is the constriction energy U c. 
Equations 3 and 5 show that the energy for cross- 
slip from the primary octahedral plane to a {1 0 0 } 
and a { l l l }  are proportional to U c and 2U c 
respectively. Hence the energy required to cross- 
slip via an octahedral plane is greater than that for 
a cube plane by a factor of approximately two; 
this implies that cross-slip from a {1 11 } on to a 
{1 0 0} is the rate-controlling step for thermally 
activated cross-slip in 3". 

The determination of the contributory terms 
(Uc, Ua, AUL and Wcs ) to the activation energy 
for cross-slip are given in Appendix 1. This analysis 
introduces a new parameter 0, which is the half- 
angle subtended by the cross-shpped segment of 
the dislocation (Fig. 6c), into the equation for 
cross-slip. A stable dislocation loop is formed 
when 0 reaches some critical value 0c, such that 
for 0 > 0 c a decrease in energy occurs as 0 increases. 
The evaluation of 0 c for cross-slip from {111} 
onto {1 0 0}, as detailed in Appendix 2, yields the 
following solutions. 

(i) cos 0c = 1 ; hence 0 c = 0, this corresponds 
to the formation of a stable constriction, with no 
dislocation loop on the cross-slip plane. 

= ") 'APB lOO , (6) 
(ii) c o s  0 c (Tb)100 -- ~/APB 100 

where r is the resolved shear stress and 'TAPB is the 
antiphase boundary energy on the effective cross- 
slip plane. For real values of 0c, (rb)loo must be 
greater than 27ApB 10o. This implies that a critical 
size of cross-slipped dislocation loop must be 
formed to be stable. Loops smaller than this critical 
size will collapse to a stable constriction with cos 
0c=  1. 

The maximum value of Ucs , i.e. the activation 
energy required to form a stable dislocation loop 
on the cross-slip plane is determined by substituting 
0 e, from Equation 6, into Equation 3: 

P~100 
Ucs = Uc111 + -  

(rb)too 

X[(1 +.X)COS-1 (1---~XX) -- ( ~ ) ( 1  --2X)1/2 ] 

(7) 
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where X =  7APB100/(Tb)100, I ~ is the line tension 
and cos 0e = X/(1 -- X) (therefore 0 ~< X < 1 for 
real values o f  0e). As X can only take values be- 
tween 0 and �89 Equation 7 can be expanded using 
Maclaurin's theorem, giving 

P•., 1 O0 
UCS = UC 111 + - -  (rb)loo 

x - 1  + ~ X -  2 

where r = --1.26 [18].  Defining a as the ratio of  
~'~ 11 : o and 13 as the ratio of  ~'too : e (where o is the 
applied stress), substituting for Uc 1 ~ a, ~', 11 and 
Tloo in Equation 8 and rearranging gives 

[ ~ Ucs = Ur 1 . 4 + o  

B 1 - - - - - ~  + + 0 . 4 2  

where 

( ' ~ A P B  + ~ / S F ) I  11 217~ l o o  
A =  , B -  

a(b2)~ 11 /~b loo 
and 

7 A P B  1 O0 
C =  

flbloo 

It can be seen from Fig. 1 that the temperature 
dependence of  the steady-state creep rate at tem- 
peratures below 680~ obeys the Arrhenius 
equation. Therefore, if creep in this temperature 
range is controlled by cross-slip from {111} to 
{1 00} planes, the following equation should 
apply: 

ln(4) = _ U c o [ 1  o ]+ B 
kT A + o cskT 

[, llq  
+ +2\,,] 4 4 0  

+ 0.42 + In (K) (9) 

where K is a constant which depends on the 
internal structure. 

The values for Uco, A, B and K obtained by 
computer-fitting the data of  Figs. 1 to 3, for the 
temperature range 530 to 680 ~ C, to Equation 9 
using an iterative linear least-squares technique are 
presented in Table IV. A range of  values for C 
were possible, but all were small ( < 0 . 2 M N m  -z )  
compared with ~ and hence all terms containing 

( C )  may be neglected. Thus creep in 7',  when con- 

trolled by the cross-slip mechanism, obeys the fol- 
lowing equation: 

[ tl t 4>] Uco o + (1 
4 = K e x p  - - ~ f -  A + o  (IkT 

(10) 

This is confirmed in Fig. 7, which shows good 
agreement between experiment (over a stress range 
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Figure 7 Plot showing that the data below 680 ~ C are in 
accordance with Equation 10. 

TABLE IV Values for the constants in the equation for cross-slip (Equation 9). 

Constant Value Comment 

UCO 6.47 +- 0.40 eV energy to form a constriction 
A 6.07 X 10 + J m -3 = (3'APB + "rSF)t 11/~(b2)~, 
B 3.26 X 10 -1~ j2 m-3 = 2r~loo/flbtoo 
C typically 5 X 10 -+ may be neglected 

K 0.47 -- 4.0 X 108 see- t A range of values 
(depends on internal structure) 
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of 360 to 600MNm -2 and temperature range 530 
to 680 ~ C) and Equation 10 for creep of Ni3Al.10 
at. % Fe. 

5. Conclusions 
(1) A model for creep, when controlled by cross- 
slip from {11 1} to {1 00} planes, has been devel- 
oped for L12 crystals. The experimental data for 
the steady-state creep of Ni3 AI.10 at. % Fe, over 
the stress range of 360 to 600MNm -2 and the 
temperature range of 530 to 680 ~ C, were in good 
agreement with this model. 

(2) At more elevated test temperatures (680 to 
930~ the rate-controlling mechanism is con- 
sidered to be the removal/production of APBs 
during climb. Weertman's theory of microcreep 
was found to be applicable with an activation 
energy for creep of 3.27 eV atom- 1. 

6. Appendix I 
Determination of Uc, (JR, AU L and Wcs. 

6.1. Uc ,  the  energy to  fo rm a cons t r ic t ion  
Stroh [25] has shown that the energy to form a 
constriction, Uc, in an fc c material is a function 
of the line tension, Ps,  and separation of the 
partials, d12, namely 

U c = (AFL)a/2d,2 (A1) 

A is a constant for a given material. Now d12 is 
given by 

2 - -  3u Ga s 1 

d12 - 2(1 -- v) 24~ rb2b2 + ('rAPB + 'rSF) 

(A2) 

where v is Poisson's ratio, 'rAPB and 'rSF are the 
energies of formation of unit area of APB and 
stacking fault respectively, rb2 is the local stress 
parallel to the Burgers vector b2 of the partial. 
Therefore defining Uco as the constriction energy 
for zero applied stress one obtains from combining 
Equations A1 and A2 

Uco ('rAeB + 'rSF) 
Uc = (A3) 

rb2b2 + ('rAPB + 'rSF) 

for a constriction of the leading partials of an ex- 
tended superlattice dislocation. 

6.2. U R , the energy to recombine the 
Shockley partials 

If E R is the recombination energy/unit length of 
dislocation, then: 

(JR = ER2I (A4) 

where l is the length of the recombined segment 
(Fig. 6b). 

Dorn [26] has shown that the energy required 
per unit length to recombine two Shockley partials 
is, 

~ b 3 Ga 2 - -dx  
ER = (r ib1  + 7SF)(dr--b)  

ar 4 24n X 

+ (A --2Ap) - - b ( r l b l  + 'rSF) 

where A and Ap are the core energies of a unit and 
a partial dislocation respectively and d r is the 
separation of the partial under an applied stress. 
The first two terms relate to the energy required 
to bring the partials together and the last two 
terms refer to the energy required to recombine 
the cores. 

2Gb 2 
Assuming A -  47r ' as evaluated using non- 

linear elastic theory, and integrating gives, 

ER = 424---~ ~-~-n (b - -b~--b~)  

(A5) 

ER is insensitive to changes in stress, since stress 
only affects the dislocation separation d r in the 
natural logarithm term. 

6.3. Wcs, work done by local stress, resolved 
onto the cross-slip plane. 

The dislocation, as a result of the local stress, bows 
in the cross-slip plane (csp) sweeping an area 

2O 2 2 sin 0 0] ~-~ ( n r ) - r  cos 

Hence, 

Wcs = r2(O - -  sin 0 cos O)resvbew 

(A6) 

6.4. AUL,  increase in dislocation line energy. 
Considering Fig. 6c, it can be seen that the in- 
crease in line energy (~UL) is given by, 

AUL = (2rO --  2r sin 0)FL (A7) 

7. Appendix II 
Determination of 0e 
To form a stable dislocation loop, (Fig. 6) 0 must 
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reach some critical value 0 c, such that  when 0 > 

0r a decrease in energy is observed as 0 increases 

(i.e. 0 e occurs when  Ucs  is a max imum) .  
Rewri t t ing Equat ion  3 in terms of  0 by  using 

Equat ions  A4, A6 and A7, different iat ing and 

equat ing to zero for a m a x i m u m  gives: 

Ucs - 0 = 2r  cos 0 cER 111 q- 2r(1 - -  cos 0 c)l~L 1 o o 
00 

+ r 2 (1 + sin 2 0 c - -  cos 2 0c)('YAPB - -  Vb)l O0 

Hence 

r cos z Oc(Tb - -  "YAPB)lOO + COS 0 e ( E  R 111 - -  F L I 0 0 )  

-~- ( F L 1 0 0  "Jr r[3"APB --  Tb] 100) ----" 0 

Dividing by  r and put t ing FL lOO = r('cb)loo gives, 

COS20c(Tb - -  7APB)100 + COS 0 e (Tb)10~0 
FLlOO 

(ER111 - -  I~L100) + ~/APB 100 = 0 

On solving 

obta ined 

which on re-arranging yields, 

c-os20e(Tb - 7APB)lO0 + COS 0e( rb) loo  

El1,! 1] + ~ A P B 1 0 0  ---- 0 
LrL100 

For  NiaA1 it can be shown that  ER111 ~ FLlOO 

(typical ly  2 to 3%) [18] ,  hence 

COS20c(Tb - - ' ~ A P B ) 1 0 0  - -  COS O e ( T b ) l O O  

+"/APB100 = 0 

for 0 e the fol lowing solutions are 

(i) c o s 0 e  = 1; 0 e = 0 

(ii) 3'APB 1 oo 
cos  0r ( r b ) l o o  - 7APB100 
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